Ring-opening Polymerization of Norbornene Catalysed by Ethyl Aluminium Dichloride; Olefin Metathesis in the Absence of a Transition Metal

By KENNETH J. IVIN,* JOHN J. ROONEY,* and CECIL D. STEWART (Chemistry Department, The Queen's University, Belfast BT9 5AG, N. Ireland)

Summary Ethyl aluminium dichloride under certain conditions catalyses the ring-opening polymerization of norbornene as well as the formation of oligomers; the possible wider significance of this observation for Ziegler-Natta polymerization is briefly discussed.

THE ring-opening polymerization of cycloalkenes is a special case of the olefin metathesis reaction which is catalysed by a great variety of transition-metal compounds, either alone or in the presence of other compounds, especially those of aluminium.¹ Here we report that under the right conditions EtAlCl₂ alone is capable of inducing ring-opening polymerization of norbornene.

The reaction was conducted at room temperature in a dry box. To a solution of 5 g of norbornene in 4 cm³ of chlorobenzene was added 0.5 cm^3 of a 25% solution of $EtAlCl_2$ in toluene (Aldrich; used either as received or distilled *in vacuo*). The mixture turned pale yellow, and heat was evolved. A little gas containing ethane and ethylene was given off. After 1 min a second portion of $0.5\,{\rm cm^3}$ of ${\rm EtAlCl_2-toluene}$ was added. More heat was liberated and the mixture began to gel. After 5 min the reaction was stopped by the addition of ethanol. A white precipitate was formed which, after a second precipitation, gave a ¹³C n.m.r. spectrum identical with that² of the ring-opened polymer (I) (yield, 0.5 g; 50% cis, 50% trans double bonds). These samples of (I) were rather insoluble gels only swelling in CHCl₃, so some cross-linking may have occurred.² The more-soluble products (yield, ca. 3.0 g) were found to contain (by g.l.c.-mass spectroscopy) tetrasubstituted dimeric olefins of type (II) (four isomers) together with higher oligomers, as previously observed in the WCl_6 -initiated reaction.³ The formation of (I) and (II) was not suppressed by the presence of pyridine (Al/py = 4), and (II) was still obtained, in the presence of EtAlCl₂ with an excess of BuⁿLi, so that, as in the WCl₆initiated reaction, the formation of (II) does not appear to involve a conventional cationic mechanism.⁴ In the

absence of the second dose of $EtAlCl_2$ only trace amounts of (I) were formed but substantial quantities of oligomers of type (II) were still obtained. $EtAlCl_2$ is a rather indifferent catalyst for ring-opening polymerization since it failed to convert cyclopentene into any polypentenamer. In this respect it resembles several transition metal complexes³ which are quite active for ring-opening polymerization of norbornene but are practically inert for metathesis of less-strained cycloalkenes and alkenes.

In order to account for these results we postulate the following. (i) That the second dose of EtAlCl₂ generates an active aluminium-carbene species (V); Scheme. The hydride shift, (III) \rightarrow (IV), should be favoured by the formation of the tertiary carbonium ion⁵ and may precede elimination of HCl by reaction with EtAlCl₂, but it is not clear why so little of (V) is formed during the first addition of EtAlCl₂. (ii) That carbene (V) forms metallocycle (VI) and sets in motion the usual type of chain reaction^{1,2} for

ring-opening polymerization; the Scheme is oversimplified in two respects: first, it ignores the known propensity for aluminium halide compounds to dimerize; and second, formation of (VI) from (V) may be step-wise rather than the formally disallowed concerted $(\pi^2 s + \pi^2 s)$ addition as written, but we propose that this Scheme provide a basis for the understanding of ring-opening polymerization catalysed by EtAlCl₂. (iii) That the oligomers of type (II) etc. are formed by the mechanism also shown in the Scheme, in which we postulate carbenoid-type intermediates (VII) and (IX). We suppose that (VII) may either form (VIII) by transfer of H^- to the positive centre, followed by *cis* β -H elimination to give (II), or may switch to the more stable species (IX) containing a tertiary carbonium ion centre, which in turn can form (X), analogous to (III), and so lead on to the formation of higher oligomers.

A mechanism of the type shown in the Scheme offers a more satisfactory route to (II) in the WC16-catalysed

reaction, since the originally proposed scheme³ involved an unlikely trans β -H elimination to yield a dimeric olefin, which must then undergo double bond shift to give (II). It will also be evident that the Scheme provides a novel mechanism for Ziegler-Natta polymerization.⁶ The present work suggests that ring-opening and Ziegler-Natta polymerizations proceed independently through distinct intermediates. There is as yet no evidence in systems where ring-opening polymerization and Ziegler--Natta polymerization proceed simultaneously, e.g., the polymerization of norbornene catalysed by TiCl₄-Et₃Al,⁷ to indicate whether the polymer consists of two distinct types of chain or whether both types of unit can be incorporated in the same chain.

(Received, 29th March 1978; Com. 322.)

¹ See review by J. J. Rooney and A. Stewart, 'Catalysis,' (Specialist Periodical Reports), Vol. 1, ed. C. Kemball, The Chemical Society, London, 1977, p. 277. ² K. J. Ivin, D. T. Laverty, and J. J. Rooney, Makromol. Chem., 1977, **178**, 1545.

- ⁴ D. T. Laverty, M. A. McKervey, J. J. Rooney, and A. Stewart, J.C.S. Chem. Comm., 1976, 193.
 ⁴ J. P. Kennedy and H. S. Madowski, J. Macromol. Sci. (Chem)., 1967, A1, 345.
 ⁵ G. A. Olah, Chem. in Britain, 1972, 8, 281.

- K. J. Ivin, J. J. Rooney, C. D. Stewart, M. L. H. Green, and R. Mahtab, following communication.
 T. Saegusa, T. Tsujino, and J. Furukawa, *Makromol. Chem.*, 1964, 78, 231; 1965, 85, 71.